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Serie n°3 – September 24th  

 

Complex Numbers 

Reciprocal spaces, X-ray diffraction 

 

 

Exercise 1 :  

1a. What are the real and imaginary parts of: (i)  √−16;    (ii)  
1+3𝑖

2+𝑖
  

1b. Find the modulus and argument of the following complex numbers, and express 

in the polar form:  (i)   
1

√2
(1 + 𝑖);   (ii)   

1+𝑖√3

1+𝑖
 

1c. Simplify the following complex expressions:  (
1+𝑖

1−𝑖
)
2024

  

1d.  

(i) Using Euler’s relation, show that:  

∀(𝑥, 𝑦) ∈ ℝ2, 𝑠𝑖𝑛(𝑥 + 𝑖𝑦) = 𝑠𝑖𝑛(𝑥) 𝑐ℎ(𝑦) + 𝑖𝑐𝑜𝑠(𝑥)𝑠ℎ⁡(𝑦) 

(Reminder: ∀𝑦 ∈ ℝ, 𝑐ℎ(𝑦) =
𝑒𝑦+𝑒−𝑦

2
 and 𝑠ℎ(𝑦) =

𝑒𝑦−𝑒−𝑦

2
) 

(ii) Use this expression to find one solution of the equation in ℂ: ⁡⁡⁡𝑠𝑖𝑛(𝑧) = 2. 

 

Exercise 2 : Trigonometry and unit circle 

2a. Place with a cross the following complex numbers on the unit circle below:  

(i)  𝑒𝑖
7𝜋

4 ;  (ii)  
1

√2
(1 − 𝑖);⁡ (iii)  𝑧 = 𝑖 ×

√3+𝑖

2
;  

 

2b. Calculate the roots of the equation: 𝑧3 = cos (
3𝜋

2
) + 𝑖𝑠𝑖𝑛(

3𝜋

2
). Place them on the unit 

circle and show that they form an equilateral triangle.  
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Exercise 3: Complex index of refraction and absorption coefficient 

We consider a dielectric material inside which a monochromatic plane wave with a 

frequency in the Infrared is traveling. The frequency turns out to correspond to a 

vibrational mode of the crystal lattice, leading to a transfer of energy between the 

electromagnetic wave and the medium. The wave is hence losing energy as it is 

traveling, which we can approach by considering a complex dielectric constant and 

index of refraction. We then define:  

𝜀𝑟 = 𝜀1 + 𝑖𝜀2 and 𝑛 = 𝑛1 + 𝑖𝑛2 

Where 𝜀1 and 𝜀2 are the real and imaginary parts of the dielectric constant 

respectively and 𝑛1 and 𝑛2 are the real and imaginary parts of the index of refraction, 

respectively. We remind you that 𝑛 = √𝜀𝑟 

 

3a.  Show that we must have:  {
𝑛1
2 − 𝑛2

2 = 𝜀1
2𝑛1𝑛2 = 𝜀2

  

 

3b. Deduce that: 

{
 

 𝑛1 =
1

√2
√(𝜀1 + √𝜀1

2 + 𝜀2
2)

𝑛2 =
1

√2
√(−𝜀1 + √𝜀1

2 + 𝜀2
2)

 

 

3c. We consider a plane wave of angular frequency 𝜔 and vector 𝑘 =
2𝜋

𝜆
𝑛 , 𝜆  being the 

wavelength, traveling along the x axis:   𝐸⃗ (𝑥, 𝑡) = 𝐸0⃗⃗⃗⃗ 𝑒
𝑖(𝑘𝑥−𝜔𝑡).  

Knowing that the intensity at a point x in the material is 𝐼(𝑥) = |𝐸(𝑥, 𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|
2
,⁡show that : 

𝐼 = 𝐼(0)𝑒−𝛼𝑥 with 𝛼 =
4𝜋

𝜆
𝑛2 

3d. Absorption and attenuation 

(i) Gallium Arsenide (GaAs) is a material widely used in optoelectronics and 

particularly in photovoltaics, in part because of its high absorption in the 

visible. At 600⁡𝑛𝑚 = 6 × 10−7⁡𝑚, 𝑛2 = 0.6.⁡ 

What is the penetration depth 𝛿𝐺𝑎𝐴𝑠 at 600 nm, that is the length of 

propagation inside the materials for which 
𝐼(𝛿)

𝐼(0)
=

1

𝑒
 ?  

(ii) Light in an silica optical fiber propagates in the core with a very low 

attenuation of the glass at the telecommunication wavelength 𝜆 = 1.55⁡𝜇𝑚. 

Typically, amplifiers are put every 50 km of fiber to reinforce the signal. This 

corresponds to a loss of 90% of intensity of the signal: 
𝐼(50⁡𝑘𝑚)

𝐼(0)
= 0.1 

Calculate what is the imaginary index of refraction of silica at 𝜆 = 1.55⁡𝜇𝑚 ?   
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Exercise 4 : Rheology and complex numbers 

Dynamic or oscillatory rheology is a powerful 

technique to characterize the viscoelastic properties 

of materials (e.g. its viscosity 𝜂). A schematic is 

illustrated on the right picture: a cylindrical sample 

is placed between two parallel plates and a 

sinusoidal deformation (stress or strain) is applied 

to the material through the oscillation of the top 

plate at a fixed frequency 𝜔. The material response 

(strain or stress) is then measured.  

Let’s assume that a sinusoidal strain 𝛾∗ is applied 

and that the stress 𝜏∗ is measured, both of them can be expressed using the complex 

exponential function: 𝛾∗ = 𝛾0𝑒
𝑖𝜔𝑡, 𝜏∗ = 𝜏0𝑒

𝑖(𝜔𝑡+𝛿). 

 

With 𝛿 the phase shift between the deformation and the response ( 𝛿 = 0 for a purely 

elastic material, 𝛿 =
𝜋

2
 for a purely viscous one, and 0 < 𝛿 <

𝜋

2
 for viscoelastic 

materials). 

4a. In the linear regime, recall that the following relation links 𝛾∗ and 𝜏∗: 𝜏∗ = 𝐺∗𝛾∗ 

where 𝐺∗ = 𝐺′ + 𝑖𝐺′′ is the complex modulus. Show that: 

𝐺′ =
𝜏0

𝛾0
cos⁡(𝛿) and 𝐺′′ =

𝜏0

𝛾0
sin⁡(𝛿) 

4b. 𝐺′ and 𝐺′′are respectively the storage and loss modulus.  

(i) In order to measure the material damping properties, the value of tan(𝛿) 

can be computed. Show that  tan(𝛿) =
𝐺′′

𝐺′
. 

(ii) What value of tan(𝛿) would you expect for a purely elastic material ? and a 

purely viscous material ?  If you consider now a viscoelastic material, what 

can you conclude on the meaning of 𝐺′ and 𝐺′′? 

 

4c. Express the value of the complex viscosity extracted from oscillatory rheology as 

a function of 𝐺′ and 𝐺′′ and conclude that it can be written as 𝜂∗ = 𝜂′ + 𝑖𝜂′′. 

(Recall: 𝜏 = 𝜂 × 𝛾̇ = 𝜂 ×
𝑑𝛾

𝑑𝑡
). 

4d. Show that |𝜂∗| =
|𝐺∗|

𝜔
 

4e. Now assume that you are applying a sinusoidal stress 𝜏∗ = 𝜏0𝑒
𝑖𝜔𝑡 and you measure 

the response strain 𝛾∗ = 𝛾0𝑒
𝑖(𝜔𝑡+𝛿). Compute once again the complex modulus  𝐺∗ and 

the complex viscosity  𝜂∗ and show that we still have |𝜂∗| =
|𝐺∗|

𝜔
. 


